Telegram Group & Telegram Channel
💬 Можно ли эффективно обучать нейросети, если их функция потерь не является выпуклой

Да, можно. Хотя невыпуклые функции потерь теоретически сложнее для оптимизации, на практике разработаны множество техник, которые позволяют успешно обучать нейросети:

🔹 Инициализация весов (например, He или Xavier) помогает избежать плохих стартовых точек.
🔹 Batch Normalization стабилизирует и ускоряет обучение.
🔹 Адаптивные оптимизаторы (как Adam, RMSProp) и моментум помогают лучше проходить через сложные участки ландшафта.
🔹 Регуляризация и схемы изменения learning rate снижают риск переобучения и ускоряют сходимость.

Кроме того, в нейросетях с большим числом параметров локальные минимумы часто оказываются «мелкими» и дают схожее качество на валидации. На практике модели с такими минимумами часто обобщаются отлично — даже несмотря на всю теоретическую «хаотичность» функции потерь.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/952
Create:
Last Update:

💬 Можно ли эффективно обучать нейросети, если их функция потерь не является выпуклой

Да, можно. Хотя невыпуклые функции потерь теоретически сложнее для оптимизации, на практике разработаны множество техник, которые позволяют успешно обучать нейросети:

🔹 Инициализация весов (например, He или Xavier) помогает избежать плохих стартовых точек.
🔹 Batch Normalization стабилизирует и ускоряет обучение.
🔹 Адаптивные оптимизаторы (как Adam, RMSProp) и моментум помогают лучше проходить через сложные участки ландшафта.
🔹 Регуляризация и схемы изменения learning rate снижают риск переобучения и ускоряют сходимость.

Кроме того, в нейросетях с большим числом параметров локальные минимумы часто оказываются «мелкими» и дают схожее качество на валидации. На практике модели с такими минимумами часто обобщаются отлично — даже несмотря на всю теоретическую «хаотичность» функции потерь.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/952

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

China’s stock markets are some of the largest in the world, with total market capitalization reaching RMB 79 trillion (US$12.2 trillion) in 2020. China’s stock markets are seen as a crucial tool for driving economic growth, in particular for financing the country’s rapidly growing high-tech sectors.Although traditionally closed off to overseas investors, China’s financial markets have gradually been loosening restrictions over the past couple of decades. At the same time, reforms have sought to make it easier for Chinese companies to list on onshore stock exchanges, and new programs have been launched in attempts to lure some of China’s most coveted overseas-listed companies back to the country.

Библиотека собеса по Data Science | вопросы с собеседований from hk


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA